Improved Estimators in Nonparametric Regression Problems
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
Differenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملWavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables
We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...
متن کاملInterval Censored Survival Data : A Review of Recent
We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...
متن کاملInterval Censored Survival Data A Review of Recent Progress
We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملEstimators for Gaussian Models Having a Block-wise Structure
Many multivariate Gaussian models can conveniently be split into independent, block-wise problems. Common settings where this situation arises are balanced ANOVA models, balanced longitudinal models, and certain block-wise shrinkage estimators in nonparametric regression estimation involving orthogonal bases such as Fourier or wavelet bases. It is well known that the standard, least squares est...
متن کامل